Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy

نویسندگان

  • Masashi Kawamura
  • Michael J. Paulsen
  • Andrew B. Goldstone
  • Yasuhiro Shudo
  • Hanjay Wang
  • Amanda N. Steele
  • Lyndsay M. Stapleton
  • Bryan B. Edwards
  • Anahita Eskandari
  • Vi N. Truong
  • Kevin J. Jaatinen
  • Arnar B. Ingason
  • Shigeru Miyagawa
  • Yoshiki Sawa
  • Y. Joseph Woo
چکیده

BACKGROUND Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

The Effect of Resistance Training and Endothelial Stem Cell Injection on Skeletal Muscle Oxidant and Antioxidant Status in STZ-Induced Diabetic Male Rats

Background: Because insulin therapy cannot properly control the progression of diabetes and its complications, other alternative therapies may be desirable. The aim of this study was to investigate the effect of resistance training and endothelial stem cell injection on skeletal muscle oxidant and antioxidant status in STZ-induced diabetic male rats. Method: In this experimental study, 36 male...

متن کامل

The Effect of Combining Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Angiogenic Factors In Diabetic Male Rats Induced By Stz

Background: Angiogenesis disorders are known mechanisms of diabetes. With the aim of reducing angiogenesis disorders, resistance training and its combination with endothelial progenitor cell injection are new strategies. Therefore, the present study was performed to determine the effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in ...

متن کامل

Simultaneous Effect of Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Vegf Angiogenic Factor and Its Relationship with Insulin Resistance in Diabetic Male Rats Induced By Stz

Background: Exercise and the simultaneous use of progenitor cells is a new strategy aimed for reducing diabetic disorders. One of the known mechanisms is angiogenic disorders caused by diabetes. Therefore, the present study was performed to determine the simultaneous effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in the skeletal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017